1、生成正态分布数据并绘制概率分布图
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# 根据均值、标准差,求指定范围的正态分布概率值
def normfun(x, mu, sigma):
pdf = np.exp(-((x - mu)**2)/(2*sigma**2)) / (sigma * np.sqrt(2*np.pi))
return pdf
# result = np.random.randint(-65, 80, size=100) # 最小值,最大值,数量
result = np.random.normal(15, 44, 100) # 均值为0.5,方差为1
print(result)
x = np.arange(min(result), max(result), 0.1)
# 设定 y 轴,载入刚才的正态分布函数
print(result.mean(), result.std())
y = normfun(x, result.mean(), result.std())
plt.plot(x, y) # 这里画出理论的正态分布概率曲线
# 这里画出实际的参数概率与取值关系
plt.hist(result, bins=10, rwidth=0.8, density=True) # bins个柱状图,宽度是rwidth(0~1),=1没有缝隙
plt.title('distribution')
plt.xlabel('temperature')
plt.ylabel('probability')
# 输出
plt.show() # 最后图片的概率和不为1是因为正态分布是从负无穷到正无穷,这里指截取了数据最小值到最大值的分布
根据范围生成正态分布:
result = np.random.randint(-65, 80, size=100) # 最小值,最大值,数量
根据均值、方差生成正态分布:
result = np.random.normal(15, 44, 100) # 均值为0.5,方差为1
2、判断一个序列是否符合正态分布
import numpy as np
from scipy import stats
pts = 1000
np.random.seed(28041990)
a = np.random.normal(0, 1, size=pts) # 生成1个正态分布,均值为0,标准差为1,100个点
b = np.random.normal(2, 1, size=pts) # 生成1个正态分布,均值为2,标准差为1, 100个点
x = np.concatenate((a, b)) # 把两个正态分布连接起来,所以理论上变成了非正态分布序列
k2, p = stats.normaltest(x)
alpha = 1e-3
print("p = {:g}".format(p))
# 原假设:x是一个正态分布
if p < alpha: # null hypothesis: x comes from a normal distribution
print("The null hypothesis can be rejected") # 原假设可被拒绝,即不是正态分布
else:
print("The null hypothesis cannot be rejected") # 原假设不可被拒绝,即使正态分布
3、求置信区间、异常值
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
import pandas as pd
# 求列表数据的异常点
def get_outer_data(data_list):
df = pd.DataFrame(data_list, columns=['value'])
df = df.iloc[:, 0]
# 计算下四分位数和上四分位
Q1 = df.quantile(q=0.25)
Q3 = df.quantile(q=0.75)
# 基于1.5倍的四分位差计算上下须对应的值
low_whisker = Q1 - 1.5 * (Q3 - Q1)
up_whisker = Q3 + 1.5 * (Q3 - Q1)
# 寻找异常点
kk = df[(df > up_whisker) | (df < low_whisker)]
data1 = pd.DataFrame({'id': kk.index, '异常值': kk})
return data1
N = 100
result = np.random.normal(0, 1, N)
# result = np.random.randint(-65, 80, size=N) # 最小值,最大值,数量
mean, std = result.mean(), result.std(ddof=1) # 求均值和标准差
# 计算置信区间,这里的0.9是置信水平
conf_intveral = stats.norm.interval(0.9, loc=mean, scale=std) # 90%概率
print('置信区间:', conf_intveral)
x = np.arange(0, len(result), 1)
# 求异常值
outer = get_outer_data(result)
print(outer, type(outer))
x1 = outer.iloc[:, 0]
y1 = outer.iloc[:, 1]
plt.scatter(x1, y1, marker='x', color='r') # 所有离散点
plt.scatter(x, result, marker='.', color='g') # 异常点
plt.plot([0, len(result)], [conf_intveral[0], conf_intveral[0]])
plt.plot([0, len(result)], [conf_intveral[1], conf_intveral[1]])
plt.show()
4、采样点离散图和概率图
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
import pandas as pd
import time
print(time.strftime('%Y-%m-%D %H:%M:%S'))
# 根据均值、标准差,求指定范围的正态分布概率值
def _normfun(x, mu, sigma):
pdf = np.exp(-((x - mu)**2)/(2*sigma**2)) / (sigma * np.sqrt(2*np.pi))
return pdf
# 求列表数据的异常点
def get_outer_data(data_list):
df = pd.DataFrame(data_list, columns=['value'])
df = df.iloc[:, 0]
# 计算下四分位数和上四分位
Q1 = df.quantile(q=0.25)
Q3 = df.quantile(q=0.75)
# 基于1.5倍的四分位差计算上下须对应的值
low_whisker = Q1 - 1.5 * (Q3 - Q1)
up_whisker = Q3 + 1.5 * (Q3 - Q1)
# 寻找异常点
kk = df[(df > up_whisker) | (df < low_whisker)]
data1 = pd.DataFrame({'id': kk.index, '异常值': kk})
return data1
N = 100
result = np.random.normal(0, 1, N)
# result = np.random.randint(-65, 80, size=N) # 最小值,最大值,数量
# result = [100]*100 # 取值全相同
# result = np.array(result)
mean, std = result.mean(), result.std(ddof=1) # 求均值和标准差
# 计算置信区间,这里的0.9是置信水平
if std == 0: # 如果所有值都相同即标准差为0则无法计算置信区间
conf_intveral = [min(result)-1, max(result)+1]
else:
conf_intveral = stats.norm.interval(0.9, loc=mean, scale=std) # 90%概率
# print('置信区间:', conf_intveral)
# 求异常值
outer = get_outer_data(result)
# 绘制离散图
fig = plt.figure()
fig.add_subplot(2, 1, 1)
plt.subplots_adjust(hspace=0.3)
x = np.arange(0, len(result), 1)
plt.scatter(x, result, marker='.', color='g') # 画所有离散点
plt.scatter(outer.iloc[:, 0], outer.iloc[:, 1], marker='x', color='r') # 画异常离散点
plt.plot([0, len(result)], [conf_intveral[0], conf_intveral[0]]) # 置信区间线条
plt.plot([0, len(result)], [conf_intveral[1], conf_intveral[1]]) # 置信区间线条
plt.text(0, conf_intveral[0], '{:.2f}'.format(conf_intveral[0])) # 置信区间数字显示
plt.text(0, conf_intveral[1], '{:.2f}'.format(conf_intveral[1])) # 置信区间数字显示
info = 'outer count:{}'.format(len(outer.iloc[:, 0]))
plt.text(min(x), max(result)-((max(result)-min(result)) / 2), info) # 异常点数显示
plt.xlabel('sample count')
plt.ylabel('value')
# 绘制概率图
if std != 0: # 如果所有取值都相同
fig.add_subplot(2, 1, 2)
x = np.arange(min(result), max(result), 0.1)
y = _normfun(x, result.mean(), result.std())
plt.plot(x, y) # 这里画出理论的正态分布概率曲线
plt.hist(result, bins=10, rwidth=0.8, density=True) # bins个柱状图,宽度是rwidth(0~1),=1没有缝隙
info = 'mean:{:.2f}\nstd:{:.2f}\nmode num:{:.2f}'.format(mean, std, np.median(result))
plt.text(min(x), max(y) / 2, info)
plt.xlabel('value')
plt.ylabel('Probability')
else:
fig.add_subplot(2, 1, 2)
info = 'non-normal distribution!!\nmean:{:.2f}\nstd:{:.2f}\nmode num:{:.2f}'.format(mean, std, np.median(result))
plt.text(0.5, 0.5, info)
plt.xlabel('value')
plt.ylabel('Probability')
plt.savefig('./distribution.jpg')
plt.show()
print(time.strftime('%Y-%m-%D %H:%M:%S'))
以上就是python 生成正态分布数据,并绘图和解析的详细内容,更多关于python 正态分布的资料请关注其它相关文章!
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
暂无“python 生成正态分布数据,并绘图和解析”评论...
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新动态
2025年10月28日
2025年10月28日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]


