数据
import numpy as np
import pandas as pd
data = [{'Name': '小明', 'Chinese': [70, 80], 'Math': [90, 80]},
{'Name': '小红', 'Chinese': [70, 80, 90], 'Math': [90, 80, 70]}]
data = pd.DataFrame(data)
data
拆分成行
def split_row(data, column):
'''拆分成行
:param data: 原始数据
:param column: 拆分的列名
:type data: pandas.core.frame.DataFrame
:type column: str
'''
row_len = list(map(len, data[column].values))
rows = []
for i in data.columns:
if i == column:
row = np.concatenate(data[i].values)
else:
row = np.repeat(data[i].values, row_len)
rows.append(row)
return pd.DataFrame(np.dstack(tuple(rows))[0], columns=data.columns)
split_row(data, column='Chinese')
拆分成列
from copy import deepcopy
def split_col(data, column):
'''拆分成列
:param data: 原始数据
:param column: 拆分的列名
:type data: pandas.core.frame.DataFrame
:type column: str
'''
data = deepcopy(data)
max_len = max(list(map(len, data[column].values))) # 最大长度
new_col = data[column].apply(lambda x: x + [None]*(max_len - len(x))) # 补空值,None可换成np.nan
new_col = np.array(new_col.tolist()).T # 转置
for i, j in enumerate(new_col):
data[column + str(i)] = j
return data
split_col(data, column='Chinese')
其他情况
1. 批量处理+不要原列
def split_col(data, columns):
'''拆分成列
:param data: 原始数据
:param columns: 拆分的列名
:type data: pandas.core.frame.DataFrame
:type columns: list
'''
for c in columns:
new_col = data.pop(c)
max_len = max(list(map(len, new_col.values))) # 最大长度
new_col = new_col.apply(lambda x: x + [None]*(max_len - len(x))) # 补空值,None可换成np.nan
new_col = np.array(new_col.tolist()).T # 转置
for i, j in enumerate(new_col):
data[c + str(i)] = j
split_col(data, columns=['Chinese','Math'])
data
2. 带int和list数据
转成这样:
import numpy as np
import pandas as pd
data = [{'Name': '小爱', 'Chinese': 70, 'Math': 90},
{'Name': '小明', 'Chinese': [70, 80], 'Math': [90, 80]},
{'Name': '小红', 'Chinese': [70, 80, 90], 'Math': [90, 80, 70]}]
data = pd.DataFrame(data)
def split_col(data, columns):
'''拆分成列
:param data: 原始数据
:param columns: 拆分的列名
:type data: pandas.core.frame.DataFrame
:type columns: list
'''
for c in columns:
new_col = data.pop(c)
max_len = max(list(map(lambda x:len(x) if isinstance(x, list) else 1, new_col.values))) # 最大长度
new_col = new_col.apply(lambda x: x+[None]*(max_len - len(x)) if isinstance(x, list) else [x]+[None]*(max_len - 1)) # 补空值,None可换成np.nan
new_col = np.array(new_col.tolist()).T # 转置
for i, j in enumerate(new_col):
data[c + str(i)] = j
split_col(data, columns=['Chinese','Math'])
data
参考文献
Python Pandas list(列表)数据列拆分成多行的方法
10分钟了解Pandas基础知识
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
暂无“pandas将list数据拆分成行或列的实现”评论...
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新动态
2025年10月28日
2025年10月28日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]





