pyecharts介绍
pyecharts 是一个用于生成 Echarts 图表的类库。Echarts 是百度开源的一个数据可视化 JS 库。用 Echarts 生成的图可视化效果非常棒
为避免绘制缺漏,建议全部安装
为了避免下载缓慢,作者全部使用镜像源下载过了
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-countries-pypkg pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-china-provinces-pypkg pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-china-cities-pypkg pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-china-counties-pypkg pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-china-misc-pypkg pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-united-kingdom-pypkg
基础案例
from pyecharts.charts import Bar
bar = Bar()
bar.add_xaxis(['小嘉','小琪','大嘉琪','小嘉琪'])
bar.add_yaxis('得票数',[60,60,70,100])
#render会生成本地HTML文件,默认在当前目录生成render.html
# bar.render()
#可以传入路径参数,如 bar.render("mycharts.html")
#可以将图形在jupyter中输出,如 bar.render_notebook()
bar.render_notebook()
from pyecharts.charts import Bar
from pyecharts import options as opts
# 示例数据
cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu']
data1 = [123, 153, 89, 107, 98, 23]
data2 = [56, 77, 93, 68, 45, 67]
# 1.x版本支持链式调用
bar = (Bar()
.add_xaxis(cate)
.add_yaxis('渠道', data1)
.add_yaxis('门店', data2)
.set_global_opts(title_opts=opts.TitleOpts(title="示例", subtitle="副标"))
)
bar.render_notebook()
from pyecharts.charts import Pie
from pyecharts import options as opts
# 示例数据
cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu']
data = [153, 124, 107, 99, 89, 46]
pie = (Pie()
.add('', [list(z) for z in zip(cate, data)],
radius=["30%", "75%"],
rosetype="radius")
.set_global_opts(title_opts=opts.TitleOpts(title="Pie-基本示例", subtitle="我是副标题"))
.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%"))
)
pie.render_notebook()
from pyecharts.charts import Line
from pyecharts import options as opts
# 示例数据
cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu']
data1 = [123, 153, 89, 107, 98, 23]
data2 = [56, 77, 93, 68, 45, 67]
"""
折线图示例:
1. is_smooth 折线 OR 平滑
2. markline_opts 标记线 OR 标记点
"""
line = (Line()
.add_xaxis(cate)
.add_yaxis('电商渠道', data1,
markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]))
.add_yaxis('门店', data2,
is_smooth=True,
markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(name="自定义标记点",
coord=[cate[2], data2[2]], value=data2[2])]))
.set_global_opts(title_opts=opts.TitleOpts(title="Line-基本示例", subtitle="我是副标题"))
)
line.render_notebook()
from pyecharts import options as opts
from pyecharts.charts import Geo
from pyecharts.globals import ChartType
import random
province = ['福州市', '莆田市', '泉州市', '厦门市', '漳州市', '龙岩市', '三明市', '南平']
data = [(i, random.randint(200, 550)) for i in province]
geo = (Geo()
.add_schema(maptype="福建")
.add("门店数", data,
type_=ChartType.HEATMAP)
.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
.set_global_opts(
visualmap_opts=opts.VisualMapOpts(),
legend_opts=opts.LegendOpts(is_show=False),
title_opts=opts.TitleOpts(title="福建热力地图"))
)
geo.render_notebook()
啊哈这个还访问不了哈
ImportError: Missing optional dependency ‘xlrd'. Install xlrd >= 1.0.0 for Excel support Use pip or conda to install xlrd.
20200822pyecharts+pandas 初步学习
作者今天学习做数据分析,有错误请指出
下面贴出源代码
# 获取数据 import requests import json china_url = 'https://view.inews.qq.com/g2/getOnsInfo"text-align: center">![]()
# 将json数据转存到Excel中 import pandas as pd #读取文件 with open('./国内疫情.json',encoding='utf-8') as f: data = f.read() #将数据转为python数据格式 data = json.loads(data) type(data)#字典类型 lastUpdateTime = data['lastUpdateTime'] #获取中国所有数据 chinaAreaDict = data['areaTree'][0] #获取省级数据 provinceList = chinaAreaDict['children'] # 获取的数据有几个省市和地区 print('数据共有:',len(provinceList),'省市和地区') #将中国数据按城市封装,例如【{湖北,武汉},{湖北,襄阳}】,为了方便放在dataframe中 china_citylist = [] for x in range(len(provinceList)): # 每一个省份的数据 province =provinceList[x]['name'] #有多少个市 province_list = provinceList[x]['children'] for y in range(len(province_list)): # 每一个市的数据 city = province_list[y]['name'] # 累积所有的数据 total = province_list[y]['total'] # 今日的数据 today = province_list[y]['today'] china_dict = {'省份':province, '城市':city, 'total':total, 'today':today } china_citylist.append(china_dict) chinaTotaldata = pd.DataFrame(china_citylist) nowconfirmlist=[] confirmlist=[] suspectlist=[] deadlist=[] heallist=[] deadRatelist=[] healRatelist=[] # 将整体数据chinaTotaldata的数据添加dataframe for value in chinaTotaldata['total'] .values.tolist():#转成列表 confirmlist.append(value['confirm']) suspectlist.append(value['suspect']) deadlist.append(value['dead']) heallist.append(value['heal']) deadRatelist.append(value['deadRate']) healRatelist.append(value['healRate']) nowconfirmlist.append(value['nowConfirm']) chinaTotaldata['现有确诊']=nowconfirmlist chinaTotaldata['累计确诊']=confirmlist chinaTotaldata['疑似']=suspectlist chinaTotaldata['死亡']=deadlist chinaTotaldata['治愈']=heallist chinaTotaldata['死亡率']=deadRatelist chinaTotaldata['治愈率']=healRatelist #拆分today列 today_confirmlist=[] today_confirmCutlist=[] for value in chinaTotaldata['today'].values.tolist(): today_confirmlist.append(value['confirm']) today_confirmCutlist.append(value['confirmCuts']) chinaTotaldata['今日确诊']=today_confirmlist chinaTotaldata['今日死亡']=today_confirmCutlist #删除total列 在原有的数据基础 chinaTotaldata.drop(['total','today'],axis=1,inplace=True) # 将其保存到excel中 from openpyxl import load_workbook book = load_workbook('国内疫情.xlsx') # 避免了数据覆盖 writer = pd.ExcelWriter('国内疫情.xlsx',engine='openpyxl') writer.book = book writer.sheets = dict((ws.title,ws) for ws in book.worksheets) chinaTotaldata.to_excel(writer,index=False) writer.save() writer.close() chinaTotaldata作者这边还有国外的,不过没打算分享出来,大家就看看,总的来说我们国内情况还是非常良好的
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
暂无“python绘图pyecharts+pandas的使用详解”评论...
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新动态
2025年10月28日
2025年10月28日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]














