这几天学习人脸识别的时候,虽然运行的没有问题,但我却意识到了一个问题
在图片进行传输的时候,GPU的利用率为0
也就是说,图片的传输速度和GPU的处理速度不能很好衔接
于是,我打算利用多线程开发一个buffer缓存
实现的思路如下
定义一个Buffer类,再其构造函数中创建一个buffer空间(这里最好使用list类型)
我们还需要的定义线程锁LOCK(数据传输和提取的时候会用到)
因为需要两种方法(读数据和取数据),所以我们需要定义两个锁
实现的代码如下:
#-*-coding:utf-8-*-
import threading
class Buffer:
def __init__(self,size):
self.size = size
self.buffer = []
self.lock = threading.Lock()
self.has_data = threading.Condition(self.lock) # small sock depand on big sock
self.has_pos = threading.Condition(self.lock)
def get_size(self):
return self.size
def get(self):
with self.has_data:
while len(self.buffer) == 0:
print("I can't go out has_data")
self.has_data.wait()
print("I can go out has_data")
result = self.buffer[0]
del self.buffer[0]
self.has_pos.notify_all()
return result
def put(self, data):
with self.has_pos:
#print(self.count)
while len(self.buffer)>=self.size:
print("I can't go out has_pos")
self.has_pos.wait()
print("I can go out has_pos")
# If the length of data bigger than buffer's will wait
self.buffer.append(data)
# some thread is wait data ,so data need release
self.has_data.notify_all()
if __name__ == "__main__":
buffer = Buffer(3)
def get():
for _ in range(10000):
print(buffer.get())
def put():
a = [[1,2,3,4,5,6,7,8,9],[1,2,3,4,5,6,7,8,9],[1,2,3,4,5,6,7,8,9]]
for _ in range(10000):
buffer.put(a)
th1 = threading.Thread(target=put)
th2 = threading.Thread(target=get)
th1.start()
th2.start()
th1.join()
th2.join()
总结
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
暂无“python 使用多线程创建一个Buffer缓存器的实现思路”评论...
更新动态
2025年10月29日
2025年10月29日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]
