padding操作是给图像外围加像素点。

为了实际说明操作过程,这里我们使用一张实际的图片来做一下处理。

pytorch 中pad函数toch.nn.functional.pad()的用法

这张图片是大小是(256,256),使用pad来给它加上一个黑色的边框。具体代码如下:

import torch.nn,functional as F
import torch
from PIL import Image
im=Image.open("heibai.jpg",'r')

X=torch.Tensor(np.asarray(im))
print("shape:",X.shape)
dim=(10,10,10,10)
X=F.pad(X,dim,"constant",value=0)

padX=X.data.numpy()
padim=Image.fromarray(padX)
padim=padim.convert("RGB")#这里必须转为RGB不然会

padim.save("padded.jpg","jpeg")
padim.show()
print("shape:",padX.shape)

输出:

shape: torch.Size([256, 256])
shape: (276, 276)

可以看出给原图四个方向给加上10维度的0,维度变为256+10+10得到的图像如下:

pytorch 中pad函数toch.nn.functional.pad()的用法

我们在举几个简单例子:

x=np.asarray([[[1,2],[1,2]]])
X=torch.Tensor(x)
print(X.shape)
pad_dims = (
          2, 2,
          2, 2,
          1, 1,

        )
X=F.pad(X,pad_dims,"constant")
print(X.shape)
print(X)

输出:

torch.Size([1, 2, 2])
torch.Size([3, 6, 6])
tensor([[[ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.]],

    [[ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 1., 2., 0., 0.],
     [ 0., 0., 1., 2., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.]],

    [[ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.]]])

可以知若pid_sim为(2,2,2,2,1,1)则原维度变化是2+2+2=6,1+1+1=3.也就是第一个(2,2) pad的是最后一个维度,第二个(2,2)pad是倒数第二个维度,第三个(1,1)pad是第一个维度。

再举一个四维度的,但是只pad三个维度:

x=np.asarray([[[[1,2],[1,2]]]])
X=torch.Tensor(x)#(1,2,2)
print(X.shape)
pad_dims = (
          2, 2,
          2, 2,
          1, 1,

        )
X=F.pad(X,pad_dims,"constant")#(1,1,12,12)
print(X.shape)
print(X)

输出:

torch.Size([1, 1, 2, 2])
torch.Size([1, 3, 6, 6])
tensor([[[[ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.]],

     [[ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 1., 2., 0., 0.],
     [ 0., 0., 1., 2., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.]],

     [[ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.]]]])

再举一个四维度的,pad四个维度:

x=np.asarray([[[[1,2],[1,2]]]])
X=torch.Tensor(x)#(1,2,2)
print(X.shape)
pad_dims = (
          2, 2,
          2, 2,
          1, 1,
          2, 2

        )
X=F.pad(X,pad_dims,"constant")#(1,1,12,12)
print(X.shape)
print(X)

输出:

torch.Size([1, 1, 2, 2])
torch.Size([5, 3, 6, 6])
tensor([[[[ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.]],

     [[ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.]],

     [[ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.]]],


.........太多了

以上这篇pytorch 中pad函数toch.nn.functional.pad()的用法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
pytorch,pad,toch,nn.functional

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?