前言
利用SVD是可以对图像进行压缩的,其核心原因在于,图像的像素之间具有高度的相关性。
代码
# -*- coding: utf-8 -*-
'''
author@cclplus
date:2019/11/3
'''
import cv2
import matplotlib as mpl
import numpy as np
import matplotlib.pyplot as plt
#转为u8类型
def restore1(u, sigma, v, k):
m = len(u)
n = len(v)
a = np.zeros((m, n))
a = np.dot(u[:, :k], np.diag(sigma[:k])).dot(v[:k, :])
a[a < 0] = 0
a[a > 255] = 255
return np.rint(a).astype('uint8')
def SVD(frame,K=10):
a = np.array(frame)
#由于是彩色图像,所以3通道。a的最内层数组为三个数,分别表示RGB,用来表示一个像素
u_r, sigma_r, v_r = np.linalg.svd(a[:, :, 0])
u_g, sigma_g, v_g = np.linalg.svd(a[:, :, 1])
u_b, sigma_b, v_b = np.linalg.svd(a[:, :, 2])
R = restore1(u_r, sigma_r, v_r, K)
G = restore1(u_g, sigma_g, v_g, K)
B = restore1(u_b, sigma_b, v_b, K)
I = np.stack((R, G, B), axis = 2)
return I
if __name__ == "__main__":
mpl.rcParams['font.sans-serif'] = [u'simHei']
mpl.rcParams['axes.unicode_minus'] = False
frame = cv2.imread("./liuyifei.bmp")
I = SVD(frame,40)
plt.imshow(I)
cv2.imwrite("out.bmp",I)
原图
取二十个特征值
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
暂无“python SVD压缩图像的实现代码”评论...
更新动态
2025年11月05日
2025年11月05日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]

