pandas可以对不同索引的对象进行算术运算,如果存在不同的索引对,结果的索引就是该索引对的并集。
一、算术运算
a、series的加法运算
s1 = Series([1,2,3],index=["a","b","c"]) s2 = Series([4,5,6],index=["a","c","e"]) print(s1+s2) ''' a 5.0 b NaN c 8.0 e NaN '''
sereis相加会自动进行数据对齐操作,在不重叠的索引处会使用NA(NaN)值进行填充,series进行算术运算的时候,不需要保证series的大小一致。
b、DataFrame的加法运算
d1 = np.arange(1,10).reshape(3,3)
dataFrame1 = DataFrame(d1,index=["a","b","c"],columns=["one","two","three"])
d2 = np.arange(1,10).reshape(3,3)
dataFrame2 = DataFrame(d2,index=["a","b","e"],columns=["one","two","four"])
print(dataFrame1+dataFrame2)
'''
four one three two
a NaN 2.0 NaN 4.0
b NaN 8.0 NaN 10.0
c NaN NaN NaN NaN
e NaN NaN NaN NaN
'''
dataFrame相加时,对齐操作需要行和列的索引都重叠的时候才回相加,否则会使用NA值进行填充。
二、指定填充值
s1 = Series([1,2,3],index=["a","b","c"]) s2 = Series([4,5,6],index=["a","c","e"]) print( s1.add(s2,fill_value=0)) ''' a 5.0 b 2.0 c 8.0 e 6.0 '''
需要注意的时候,使用add方法对两个series进行相加的时候,设置fill_value的值是对于不存在索引的series用指定值进行填充后再进行相加。除了加法add,还有sub减法,div除法,mul乘法,使用方式与add相同。DataFrame与series一样。
s1 = Series([1,2,3],index=["a","b","c"]) s2 = Series([4,5,6],index=["a","c","e"]) print(s2.reindex(["a","b","c","d"],fill_value=0)) ''' a 4 b 0 c 5 d 0 ''' s3 = s1 + s2 print(s3.reindex(["a","b","c","e"],fill_value=0)) ''' a 5.0 b NaN c 8.0 e NaN '''
使用reindex进行填充的时候,需要注意的是,不能对已经是值为NaN的进行重新赋值,只能对使用reindex之前不存在的所以使用指定的填充值,DataFrame也是一样的。
三、DataFrame与Series的混合运算
a、DataFrame的行进行广播
a = np.arange(9).reshape(3,3)
d = DataFrame(a,index=["a","b","c"],columns=["one","two","three"])
#取d的第一行为Series
s = d.ix[0]
print(d+s)
'''
one two three
a 0 2 4
b 3 5 7
c 6 8 10
'''
b、DataFrame的列进行广播
a = np.arange(9).reshape(3,3)
d = DataFrame(a,index=["a","b","c"],columns=["one","two","three"])
#取d的第一列为Series
s = d["one"]
print(d.add(s,axis=0))
'''
one two three
a 0 1 2
b 6 7 8
c 12 13 14
'''
对列进行广播的时候,必须要使用add方法,而且还要将axis设置为0,不然就会得到下面的结果
print(d.add(s))
'''
a b c one three two
a NaN NaN NaN NaN NaN NaN
b NaN NaN NaN NaN NaN NaN
c NaN NaN NaN NaN NaN NaN
'''
以上这篇对pandas的算术运算和数据对齐实例详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
pandas,算术运算,数据对齐
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新动态
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]