如下所示:
> import pandas as pd
> import numpy as np
# 生成模拟数据
> df = pd.DataFrame({'a':np.random.randint(1, 100, 10), 'b':np.random.randint(1, 100, 10)}, index=map(str, range(10)))
> df
a b
0 21 54
1 53 28
2 18 87
3 56 40
4 62 34
5 74 10
6 7 78
7 58 79
8 66 80
9 30 21
# 纵向一阶差分,当前行减去上一行
> df.diff()
a b
0 NaN NaN
1 32.0 -26.0
2 -35.0 59.0
3 38.0 -47.0
4 6.0 -6.0
5 12.0 -24.0
6 -67.0 68.0
7 51.0 1.0
8 8.0 1.0
9 -36.0 -59.0
# 横向一阶差分,当前列减去左边的列
> df.diff(axis=1)
a b
0 NaN 33.0
1 NaN -25.0
2 NaN 69.0
3 NaN -16.0
4 NaN -28.0
5 NaN -64.0
6 NaN 71.0
7 NaN 21.0
8 NaN 14.0
9 NaN -9.0
# 纵向二阶差分
> df.diff(periods=2)
a b
0 NaN NaN
1 NaN NaN
2 -3.0 33.0
3 3.0 12.0
4 44.0 -53.0
5 18.0 -30.0
6 -55.0 44.0
7 -16.0 69.0
8 59.0 2.0
9 -28.0 -58.0
# 纵向二阶差分,丢弃空值
> df.diff(periods=2).dropna()
a b
2 -3.0 33.0
3 3.0 12.0
4 44.0 -53.0
5 18.0 -30.0
6 -55.0 44.0
7 -16.0 69.0
8 59.0 2.0
9 -28.0 -58.0
以上这篇Python使用pandas对数据进行差分运算的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
暂无“Python使用pandas对数据进行差分运算的方法”评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新动态
2025年11月08日
2025年11月08日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]