本文实例讲述了Python机器学习之scikit-learn库中KNN算法的封装与使用方法。分享给大家供大家参考,具体如下:
1、工具准备,python环境,pycharm
2、在机器学习中,KNN是不需要训练过程的算法,也就是说,输入样例可以直接调用predict预测结果,训练数据集就是模型。当然这里必须将训练数据和训练标签进行拟合才能形成模型。
3、在pycharm中创建新的项目工程,并在项目下新建KNN.py文件。
import numpy as np
from math import sqrt
from collections import Counter
class KNNClassifier:
def __init__(self,k):
"""初始化KNN分类器"""
assert k >= 1
"""断言判断k的值是否合法"""
self.k = k
self._X_train = None
self._y_train = None
def fit(self,X_train,y_train):
"""根据训练数据集X_train和Y_train训练KNN分类器,形成模型"""
assert X_train.shape[0] == y_train.shape[0]
"""数据和标签的大小必须一样
assert self.k <= X_train.shape[0]
"""k的值不能超过数据的大小"""
self._X_train = X_train
self._y_train = y_train
return self
def predict(self,X_predict):
"""必须将训练数据集和标签拟合为模型才能进行预测的过程"""
assert self._X_train is not None and self._y_train is not None
"""训练数据和标签不可以是空的"""
assert X_predict.shape[1]== self._X_train.shape[1]
"""待预测数据和训练数据的列(特征个数)必须相同"""
y_predict = [self._predict(x) for x in X_predict]
return np.array(y_predict)
def _predict(self,x):
"""给定单个待测数据x,返回x的预测数据结果"""
assert x.shape[0] == self._X_train.shape[1]
"""x表示一行数据,即一个数组,那么它的特征数据个数,必须和训练数据相同
distances = [sqrt(np.sum((x_train - x)**2))for x_train in self._X_train]
nearest = np.argsort(distances)
topk_y = [self._y_train[i] for i in nearest[:self.k]]
votes = Counter(topk_y)
return votes.most_common(1)[0][0]
4、新建test.py文件,引入KNNClassifier对象。
from KNN.py import KNNClassifier
raw_data_x = [[3.393,2.331],
[3.110,1.781],
[1.343,3.368],
[3.582,4.679],
[2.280,2.866],
[7.423,4.696],
[5.745,3.533],
[9.172,2.511],
[7.792,3.424],
[7.939,0.791]]
raw_data_y = [0,0,0,0,0,1,1,1,1,1]
X_train = np.array(raw_data_x)
y_train = np.array(raw_data_y)
x = np.array([9.880,3.555])
# 要将x这个矩阵转换成2维的矩阵,一行两列的矩阵
X_predict = x.reshape(1,-1)
"""1,创建一个对象,设置K的值为6"""
knn_clf = KNNClassifier(6)
"""2,将训练数据和训练标签融合"""
knn_clf.fit(X_train,y_train)
"""3,经过2才能跳到这里,传入待预测的数据"""
y_predict = knn_clf.predict(X_predict)
print(y_predict)
更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》
希望本文所述对大家Python程序设计有所帮助。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
暂无“Python机器学习之scikit-learn库中KNN算法的封装与使用方法”评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新动态
2025年11月08日
2025年11月08日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]
