这个阶段一直在做和梯度一类算法相关的东西,索性在这儿做个汇总:
一、算法论述
梯度下降法(gradient descent)别名最速下降法(曾经我以为这是两个不同的算法-.-),是用来求解无约束最优化问题的一种常用算法。下面以求解线性回归为题来叙述:
则
这一组向量参数选择的好与坏就需要一个机制来评估,据此我们提出了其损失函数为(选择均方误差):
如果
的值取到了0,意味着我们构造出了极好的拟合函数,也即选择出了最好的
值,但这基本是达不到的,我们只能使得其无限的接近于0,当满足一定精度时停止迭代。
那么问题来了如何调整
使得
取得的值越来越小呢?方法很多,此处以梯度下降法为例:
其中
为步长因子,这里我们取定值,但注意如果
取得过小会导致收敛速度过慢,
过大则损失函数可能不会收敛,甚至逐渐变大,可以在下述的代码中修改
的值来进行验证。后面我会再写一篇关于随机梯度下降法的文章,其实与梯度下降法最大的不同就在于一个求和符号。
二、代码实现
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import axes3d
from matplotlib import style
#构造数据
def get_data(sample_num=10000):
"""
拟合函数为
y = 5*x1 + 7*x2
:return:
"""
x1 = np.linspace(0, 9, sample_num)
x2 = np.linspace(4, 13, sample_num)
x = np.concatenate(([x1], [x2]), axis=0).T
y = np.dot(x, np.array([5, 7]).T)
return x, y
#梯度下降法
def GD(samples, y, step_size=0.01, max_iter_count=1000):
"""
:param samples: 样本
:param y: 结果value
:param step_size: 每一接迭代的步长
:param max_iter_count: 最大的迭代次数
:param batch_size: 随机选取的相对于总样本的大小
:return:
"""
#确定样本数量以及变量的个数初始化theta值
m, var = samples.shape
theta = np.zeros(2)
y = y.flatten()
#进入循环内
print(samples)
loss = 1
iter_count = 0
iter_list=[]
loss_list=[]
theta1=[]
theta2=[]
#当损失精度大于0.01且迭代此时小于最大迭代次数时,进行
while loss > 0.001 and iter_count < max_iter_count:
loss = 0
#梯度计算
theta1.append(theta[0])
theta2.append(theta[1])
for i in range(m):
h = np.dot(theta,samples[i].T)
#更新theta的值,需要的参量有:步长,梯度
for j in range(len(theta)):
theta[j] = theta[j] - step_size*(1/m)*(h - y[i])*samples[i,j]
#计算总体的损失精度,等于各个样本损失精度之和
for i in range(m):
h = np.dot(theta.T, samples[i])
#每组样本点损失的精度
every_loss = (1/(var*m))*np.power((h - y[i]), 2)
loss = loss + every_loss
print("iter_count: ", iter_count, "the loss:", loss)
iter_list.append(iter_count)
loss_list.append(loss)
iter_count += 1
plt.plot(iter_list,loss_list)
plt.xlabel("iter")
plt.ylabel("loss")
plt.show()
return theta1,theta2,theta,loss_list
def painter3D(theta1,theta2,loss):
style.use('ggplot')
fig = plt.figure()
ax1 = fig.add_subplot(111, projection='3d')
x,y,z = theta1,theta2,loss
ax1.plot_wireframe(x,y,z, rstride=5, cstride=5)
ax1.set_xlabel("theta1")
ax1.set_ylabel("theta2")
ax1.set_zlabel("loss")
plt.show()
def predict(x, theta):
y = np.dot(theta, x.T)
return y
if __name__ == '__main__':
samples, y = get_data()
theta1,theta2,theta,loss_list = GD(samples, y)
print(theta) # 会很接近[5, 7]
painter3D(theta1,theta2,loss_list)
predict_y = predict(theta, [7,8])
print(predict_y)
三、绘制的图像如下:
迭代次数与损失精度间的关系图如下:步长为0.01
变量
、
与损失函数loss之间的关系:(从初始化之后会一步步收敛到loss满足精度,之后
、
会变的稳定下来)
下面我们来看一副当步长因子变大后的图像:步长因子为0.5(很明显其收敛速度变缓了)
当步长因子设置为1.8左右时,其损失值已经开始震荡
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新动态
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]











